Chronic Lymphocytic Leukemia: What's In The Treatment Pipeline

Nicole Lamanna, MD
Judy Horrigan Professor of Medicine, Leukemia Service
Director of the Chronic Lymphocytic Leukemia Program
Hematologic Malignancies Section
Herbert Irving Comprehensive Cancer Center
New York-Presbyterian/Columbia University Medical Center
New York, New York

Disclosures Nicole Lamanna, MD

I have the following financial relationships to disclose:

Advisory Board: AbbVie, Adaptive Biosciences, Allogene Therapeutics, AstraZeneca, BeiGene, Eli Lilly/Loxo, Genentech, Genmab, Janssen, Pharmacyclics;

Honoraria: AbbVie, Adaptive Biosciences, Allogene Therapeutics, AstraZeneca, BeiGene, Eli Lilly/Loxo, Genentech, Genmab, Janssen, Pharmacyclics, Aptitude Health, BioAscend, Clinical Care Options, Curio, DAVA Oncology, OncLive, PER, Peerview, Targeted Oncology;

Institutional Research/Grant Support: AbbVie, AstraZeneca, BeiGene, Eli Lilly/LOXO, Genentech, Genmab, MingSight, Octapharma, Oncternal, TG Therapeutics

The CLL Treatment Journey

Key Principles of novel "Targeted Therapies"

- Cancer treatments that target a particular area, protein, receptor, pathway in CLL cells
- They do not target healthy cells, limiting side effects
- But what do they do?
 - Block or turn off chemical signals that tell the cancer cell to grow and divide
 - Change proteins within the cancer cells so the cells die
 - Trigger your immune system to kill the cancer cells

Targeted Therapy: FDA Approvals and Current Status in CLL

Agent	Target	Status in CLL/SLL
Ibrutinib ¹		Approved
Acalabrutinib ²	BTK (covalent)	Approved
Zanubrutinib ³		Approved
Pirtobrutinib	_ BTK (non-covalent) _	Approved
Venetoclax ⁴	BCL-2	Approved

Lisocei Appioved		Lisocel ⁷	CAR-T	Approved
------------------	--	----------------------	-------	----------

^{1.} Imbruvica (ibrutinib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205552s002lbl.pdf. 2. Calquence (acalabrutinib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/210259s000lbl.pdf. 3.Zanubrutinib prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213217s007lbl.pdf. 4. Venclexta (venetoclax) Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208573s009lbl.pdf. 5. Zydelig (idelalisib) Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206545lbl.pdf. 6. Copiktra (duvelisib) Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211155s000lbl.pdf. 7. Jaypirca (pirtobrutinib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216059s000lbl.pdf.

What are the best options for Relapsed Disease?

"Double Exposed" vs "Double Refractory"?

- **Double-exposed:** relapsed CLL after *exposure* to both covalent BTKi and venetoclax
 - Example: progression > 1-2 years after EOT with FD venetoclax regimen
 - Discontinuation of cBTKi for intolerance rather than PD

- <u>Double-refractory</u>¹: relapsed CLL after *progression* on both cBTKi and venetoclax
 - Example: progression < 1 year after EOT with FD venetoclax regimen
 - Progression during treatment with both cBTKi and venetoclax
- The optimal treatment-free remission after completion of fixed-duration therapy has not yet been clarified......stay tuned, clinical trials underway to help clarify this

Newer agents for dual-exposed patients: Simple Analogies for how they work!

Non-Covalent BTKi:

BTK degraders:

CD19 CAR-T cell therapy:

BCL2 inhibitors:

CD20/CD3 bispecific antibodies:

Newer Agents in Pipeline for "Double-Exposed or Double-Refractory" CLL patients

Non-Covalent BTKi: BRUIN- Pirtobrutinib¹(FDA approved 12/2023), BELLWAVE-

001-nemtabrutinib²

Dual-Activity Covalent/Non-Covalent BTKi: LP168³

BTK degraders: NX-2127 (NCT04830137)⁵ and BGB-16673 (NCT05006716)⁶ and

ABBV-101⁷

CD19 CAR-T cell therapy: TRANSCEND – Lisocel⁴ (FDA approved 3/2024)

BCL2 inhibitors: Sonrotoclax⁸ and lisaftoclax⁹

CD20/CD3 bispecific antibodies: epcoritamab (NCT04623541) ^{10,11}; mosunetuzumab (NCT05091424)

1. Mato et al. ASH 2022. Abstract 961. 2. Woyach J et al. EHA 2023. Abstract P628. 3. Woyach J et al. ASH 2023. Abstract 328. 4. Siddiqi T et al. Lancet. 2023;402(10402):641-654. 5. Danilov A et al. ASH 2023. Abstract 4463. 6. Seymour JF et al. ASH 2023. Abstract 4401. 7. Linton K et al. EHA 2024. Abstract S155. 8. Pan C et al. AACR 2024. Abstract 605. 8. Opat S et al. EHA 2024. Abstract S156. 9. Davids M et al. ASH 2024. Abstract 4614. 10. Kater AP et al. iwCLL 2023. Abstract 1546171. 11. Danilov A et al. ASH 2024. Abstract 883.

Inhibiting BTK: A Mainstay of CLL Therapy

Multiple Ways to Shut Down BTK

Think of BTK as a light switch that helps turn on signals that allow CLL cells to survive and grow. **Covalent BTK inhibitors** are like using superglue to permanently jam the switch in the "off" position — but if the switch gets damaged or changed, the glue may not stick. That's where **non-covalent BTK inhibitors** come in! These are more like smart Velcro — they can still grip and turn off the switch, even if its shape changes. This gives us another tool to block CLL signals.

BRUIN Update: Longer Follow-Up Confirms Pirtobrutinib Efficacy in R/R CLL/SLL Patients¹

Prior BTKi (n = 247)

Prior BTKi + BCL2i

(n = 100)

Pirtobrutinib (200 mg QD) demonstrated durable efficacy in patients treated with a prior covalent BTKi, regardless of

- Prior therapy, reason for prior BTKi discontinuation, or age
- TP53 mutations, C481 mutational status, and/or del(17p)

BRUIN Update: Robust PFS in Covalent BTKi-Pretreated R/R CLL/SLL Patients¹

Woyach JA, et al. ASH 2023. Abstract 325

BRUIN Phase 1b: Fixed-duration Pirtobrutinib + Ven±R

Best overall response of pirtobrutinib-based combination treatments

	PV (n = 15)	PVR (n = 10)	Total (N = 25)
	15	10	25
ORR, % (95% CI)	93.3 (68.1-99.8)	100 (69.2-100)	96.0 (79.6-99.9)
Best response, n (%)*			
CR	7 (46.7)	3 (30.0)	10 (40.0)
PR	7 (46.7)	7 (70.0)	14 (56.0)
SD	1 (6.7)	0	1 (4.0)
PD	0	0	0
Median time to best response, mo (IQR)	3.9 (1.9- 14.7)	1.9 (1.8- 10.7)	2.4 (1.9-14.3)

PFS rates

BELLWAVE-001/Nemtabrutinib: Response and PFS In Pretreated CLL^{1,a}

- Promising and durable antitumor activity in a highly R/R population: ORR: 56%
- ORR of 58% in C481S-mutated disease

^a Cohort A comprises patients with R/R CLL/SLL who received ≥ 2 prior therapies, including covalent BTKi, and who have C481S mutation. Cohort B comprises patients with R/R CLL/SLL who received ≥ 2 prior therapies, are intolerant to BTKi, and have no C481S mutation.

^{1.} Woyach J et al. EHA 2023. Abstract P628.

Rocbrutinib: A Dual-Activity c/ncBTKi in R/R CLL¹

Rocbrutinib binds

<u>covalently in the</u>

<u>presence of WT BTK</u>

Rocbrutinib binds
non-covalently in the
presence of C481 mutated
BTK

LP-168 evaluated in a phase 1 doseescalation study

- 35 patients, median of 3 prior therapies
- 94% receiving prior cBTKi
 - 11% a ncBTKi
- Most patients with BTK resistance mutations
- 20 patient with del(17p) and/or TP53m

Initial evidence showed an ORR of 55% Doses ≥ 200 mg: ORR was 66.7

Rocbrutinib: A Dual-Activity c/ncBTKi in R/R CLL¹

Rocbrutinib binds
covalently in the
presence of WT BTK

Rocbrutinib binds
non-covalently in the
presence of C481 mutated
BTK

Efficacy outcomes in patients with R/R CLL and gatekeeper mutations $(N = 47)^2$

18-month PFS 68.5%

Patient receiving starting doses \geq 200 mg 77.3% (n = 22)

Multiple Ways to Shut Down BTK – BTK Degraders

Can BTK Degraders Overcome Resistance?

BGB-16673: A BTK-Targeted CDAC¹

NX-5948 Utilizes the Ubiquitin-Proteasome Pathway to Degrade BTK²

ABBV-101 Degrades BTK Targeting in Both the Catalytic and Scaffolding Functions³

CaDAnCe-101: Further Evidence Shows the Potential for Deep Responses with BGB-16673 in Heavily Pretreated CLL

N = 49 response-evaluable patients

Median number of prior therapies was 4 (range, 2-10), including

• Prior cBTKis (n = 45), BCL2i (n = 42), and ncBTKi (n = 12)

Response at 200 mg dosing level	N (%)
ORR	38 (78)
CR/CRi	2 (4)

- Median time to first response was 2.8 months (range, 2.6-8.3 months)
- 17 patients remained on treatment for ≥ 9 months and all 17 have ongoing responses

In Phase 1 Testing, the BTK Degrader NX-5948 Showed Efficacy Against Poor Prognosis R/R CLL

NX-5948 induced deep and durable clinical responses in a Heavily pretreated CLL population with unfavorable genetic mutations and BTK resistance mutations¹

CLL disease-evaluable patients ^a	n=26
Objective response rate (ORR)b, % (95% CI)	69.2 (48.2–85.7)
Best response, n (%)	
CR	0 (0.0)
PR / PR-L	18 (69.2)
SD	6 (23.1)
PD	2 (7.7)

Patients without identified target lesion(s) at baseline are evaluated as disease-evaluable per iwCLL, while they may not be represented in waterfall plot; bObjective response rate includes CR + CRi + nPR + PR-L + PR

CAR-T Cells for CLL Therapy: Sending the immune system to military school! Teach them to target and fight CLL!

Patient's Journey with CART

Timeline varies by product and manufacturer

TRANSCEND CLL 004: Exploration of CAR-T in CLL¹

Key Eligibility

COLUMBIA UNIVERSITY
TRVING MEDICAL CENTER

- Relapsed/refractory CLL/SLL
- Failed or ineligible for BTKib
- High-risk diseasec: failed ≥2 prior therapies
- Standard-risk disease: failed ≥3 prior therapies
- ECOG PS of 0-1

Dose Escalation: mTPI-2 Designd

28-day DLT period

Primary objectives

- Safety
- Determine recommended dose

Exploratory objectives

- Antitumor activity
- Pharmacokinetic profile

Dose Level	Dose	Evaluable (N = 23)
1	50 × 10 ⁶ CAR-T cells	9
2	100 × 10 ⁶ CAR-T cells	14

^a One patient received nonconforming product. ^b Failure defined as SD or PD as best response, or PD after previous response, or discontinuation due to intolerance (unmanageable toxicity). Ineligibility defined as requirement for full-dose anticoagulation or history of arrhythmia. ^c Complex cytogenetic abnormalities, del(17p), TP53 mutation, or unmutated IGHV. ^d Guo W et al. Contemp Clin Trials. 2017;58:23-33.

Liso-Cel Is Effective in Patients With CLL Progressing After Prior BTKi and Venetoclax Therapy

A single infusion of liso-cel induced complete response or remission (including with incomplete marrow recovery) in patients with R/R CLL/SLL¹

 18.4% CR/CRi in patients with R/R CLL after BTKi progression/venetoclax failure

Led to US FDA approval in 3/2024 in patients with R/R CLL who have received ≥ 2 prior LOT, including a BTKi and a BCL2i

Updated Efficacy Outcomes: BTKi Progression/Venetoclax Failure Subset at DL2 (N = 49)²

Time From Liso-Cel Infusion, mo

	1	0	0
CR/CRi 9 8 8 5 2		U	U
PR/nPR 12 12 9 6 5	1	1	0
Nonresponder 28 6 2 2 0	0	0	0
Total 49 26 19 13 7	2	1	0

Updates on Combining CAR-T With BTKi in CLL

TRANSCEND CLL 004 Combination Cohort

Next-Generation BCL2i on the Horizon

CLL cells use BCL2 as a life vest to survive and stay afloat when they would otherwise die. Venetoclax pin-pricks the life vest. Sonrotoclax (hopefully, slashes it with a huge knife!)

Next-Generation BCL2i with Sonrotoclax

Sonrotoclax, a next-generation BCL2i¹

- Selective and pharmacologically potent inhibitor of BCL2
- Short half-life, no drug accumulation

Study assessed 8-12 weeks of zanubrutinib lead-in (320 mg QD or 160 mg BID), then in combination with sonrotoclax (with weekly or daily ramp-up to target dose)

Sonrotoclax + Zanubrutinib Combination Is Highly Active, With No Clinical or Laboratory TLS¹

At median study follow-up of 19.3 months, the ORR was 97%, with a 57% CR/Cri rate across all doses

Safety

- No TLS, a-fib, febrile neutropenia
- No dose reductions due to diarrhea

ASH 2024 Update

- 100% ORR in response evaluable patients (N = 108)
- 90% best uMRD rate in patients in the 320-mg cohort who reached 48 weeks of therapy

^{1.} Opat S et al. EHA 2024. Abstract S156.

Lisaftoclax: Oral BCL2i With a Short Half-life, Allowing for Daily Ramp-Up Dosing¹

1. Davids MS et al. ASH 2022;140(suppl 1):2326-2328...

Can Newer BCL2i Help Optimize Dose Delivery? Updates on Lisaftoclax

Efficacy in R/R CLL as combination therapy with accelerated ramp-up¹

Lisaftoclax plus acalabrutinib	N = 87
ORR	96.6%
 ven-exposed patients 	85.7%
 ven- and BTKi-exposed patients 	66.7%

Bispecific Antibodies for CLL Therapy

Are Bispecific Antibodies the Next Step

for Immunotherapy in CLL?

CRS Summary From the <u>RS Cohort</u> of the EPCORE CLL-1 Trial

	Total (N = 10)
CRS, n (%) ^a	9 (90)
Grade 1	3 (30)
Grade 2	6 (60)
CRS resolution, n/n (%)	9/9 (100)
Median time to onset after first full dose, h (range)	12.5 (8-394)
Median time to resolution, d (range) ^b	3 (2-9)
Treated with tocilizumab, n (%)	7 (70)
Leading to treatment discontinuation, n (%)	0

NCT04623541 – epcoritamab in combination with lenalidomide or RCHOP for RT is ongoing

EPCORE CLL-1: Unique Bispecific Dosing

- Most common TEAEs included CRS, thrombocytopenia, and anemia
 - In general, CRS is milder with bispecifics than what is typically seen with CAR-T
- 3 cases of RT
 - 1 of 3 patients found to have a Tprolymphocytic leukemia in the marrow prior to the study

AEs of Special Interest

CRS ^a	Total, N=23
Median time to onset after first full dose, h (range)	7.3 (1–99)
Median time to resolution, d (range)b	3 (1–16)
Treated with tocilizumab, n (%)	19 (83)
CRS resolution, n/n (%)	22/22 (100)

ICANS & Clinical Tumor Lysis Syndrome	Total, N=23
ICANS, n (%) ^c	3 (13)
Grade 1	1 (4)
Grade 2	2 (9)
Median time to resolution, d (range)	3 (3–4)
ICANS resolution, n/n (%)	3/3 (100)
Tumor lysis syndrome, n (%)	1 (4)
Laboratory only	0
Clinical – grade 2	1 (4)
Time to resolution, d	11
Clinical tumor lysis syndrome resolution, n/n (%)	1/1 (100)

- CRS occurrence was predictable, with most cases following the first full dose
- No AEs of special interest led to discontinuation, and all resolved

^a Graded by Lee et al 2019 criteria. ^b Median is Kaplan–Meier estimate based on longest CRS duration in patients with CRS. ^c All ICANS events occurred with grade 2 CRS.

Can Use of Bispecifics Be Optimized? EPCORE CLL-1 Expansion and Optimization Cohorts

All patients received SC epcoritamab 48 mg at the usual dose

Adequate hydration and CRS prophylaxis To mitigate CRS¹ ... with dexamethasone 15 mg were implemented in C1 Full dose Step-up 1 Step-up 2 CT/MRI obtained every 48 mg 28-day 8 weeks through cycle • 0.16 mg priming • 0.8 mg cycles 6, and at 24 weeks intermediate QW C1-3 thereafter Q2W C4-9 Q4W C10+ **ASH24: Immune-related toxicities Step-up 3 (3-mg)** were markedly improved with an

Additional step-up dose for

optimization cohort

1. Danilov A et al. ASH 2024. Abstract 883.

adapted SUD schedule, with

primarily G1 CRS and no ICANS

Newer agents for dual-exposed patients: Simple Analogies for how they work!

Non-Covalent BTKi:

BTK degraders:

CD19 CAR-T cell therapy:

BCL2 inhibitors:

CD20/CD3 bispecific antibodies:

Take-Homes on What's In The Pipeline

- When thinking about what therapies are next always important to think about what someone
 has received along their journey
- Good News! Lots of new options of therapy in the pipeline
- Noncovalent BTKis such as pirtobrutinib are useful after progression on covalent BTKis
 (ibrutinib/acalabrutinib/zanubrutinib) and venetoclax-based therapy. Approved in US/soon to be
 approved hopefully in Canada. Time-limited studies with pirtobrutinib ongoing.
- BTK degraders are exciting option to overcome potential resistance for patients who have had BTK inhibitors
- CART (lisocel) also an option for multiply relapsed patients with CLL (particularly for patients refractory to many therapies)— studies ongoing to best optimize this therapy
- Bispecific monoclonal antibody therapies showing excellent result in lymphoma and trials in CLL/Richter's syndrome are ongoing

